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Abstract-This paper presents a method of determining the temperature distribution in an internally 
cooled tube which is exposed to non-uniform radiation around its outer surface. Radial and circum- 
ferential heat transfer in the tube wall is considered and, at the tube inner surface, inter-radiation is 
accounted for in addition to convection. Also, the influence of tube spacing on the temperature 
distribution is included. 

Equations are derived which are applicable when tubes are exposed to radiation from a flame which 
can be represented by an infinite plane source. In an appendix the equations are modified to apply to 
the case of a flame represented by a cylindrical source. 

By use of finite-difference approximations and iteration, a method of solution to the steady state 
problem is outlined. This has been programmed for solution on a digital computer and the resulting 
isothermal curves arising from a given set of data are presented. 

Also, an approximate solution is outlined which gives good agreement with the numerical solution 
when the difference in temperature between the radiating source and background is small. 
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AMM, 
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dF1, dFs, 

dFz, dFj, 

dF;, 

G, 

NOMENCLATURE 

emissivity governing the radiant 
heat transfer from the background 
to the tube metal; 
emissivity governing the radiant 
heat transfer from the flame to the 
background; 
emissivity governing the radiant 
heat transfer from the flame to the 
tube metal; 
emissivity governing the radiant 
heat transfer between different 
parts of the tube inner surface; 
width of each side of the square 
combustion chamber; 
flame diameter; 
elementary surface areas on the 
tube outer surface; 
elementary surface areas on the 
tube inner surface; 
projected area of dF5 onto the 
surface of a unit hemisphere; 
geometric factor-the ratio of 
flame perimeter to combustion 
chamber perimeter; 

h, internal heat-transfer coefficient of 
the coolant; 

h intensity of normal radiation from 
dFz ; 

I,, intensity of normal radiation from 
dFf; 

N, number of tubes lining the com- 
bustion chamber; 

49 heat flow; 

21, 
radius; circular polar co-ordinate; 
tube outer radius; 

RZ, tube inner radius; 
S, distance between the centres of 

adjacent tubes; 

+, 
time ; 
tube absolute temperature at dF1; 

TB, radiating absolute temperature of 
the background; 

TC, coolant absolute temperature; 
TF, radiating absolute temperature of 

the flame; 
G = T(R2, cp), tube absolute tempera- 

ture at dFfj; 
TCr, @, absolute temperature in the tube 

wall at the point defined by r, 8; 
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T* = go; 
x, Y, 2, rectangular Cartesian co-ordinates. 

Greek symbols 
thermal diffusivity of the tube 
material; 

= al(e), “plane” view angle of the 
flame at the point (RI, 0); 

= a@), “plane” view angle of the 
background at the point (RI, 0); 
“plane” view angle of the flame at 
the point (RI, 0) for a cylindrical 
flame; 
ratio of the tube outer diameter 
to the distance between centres of 
adjacent tubes; 
angle whose cosine is 4G/1~; 
angle whose cosine is ,!?; 
circular and spherical polar co- 
ordinate; integration variable; 
thermal conductivity of the tube 
metal; 
“plane” view angle of the flame 
at the point (RI, 0) for a cylindrical 
flame; 
Stefan-Boltzmann constant; 
angle between the line joining dFr 
to dFs and the outward drawn 
normal to dF1; angle between the 
line joining dF{ to dF3 and the 
outward drawn normal to dFi; 
spherical polar co-ordinate; inte- 
gration variable; 
Laplacian operator in circular 
polar co-ordinates. 

1. INTRODUCTION 

IN MODERN steam power plant an increasing 
proportion of steam superheat is supplied by 
radiant heat transfer. A knowledge of the ther- 
mal stresses within the walls of tubes used for 
this purpose is of great interest, particularly as 
temperature and heat flux move to more advanced 
conditions. 

In order to calculate the thermal stresses, a 
knowledge of the prevailing temperature field is 
the first requirement. Most methods of calculat- 
ing the temperature distribution within a tube 

wall given in the literature assume a known 
radiation heat transfer at the tube outer surface 
and no account is made of the view angle of a 
point on the outer surface (e.g. references [l] and 
[2]). Also, apart from Saizmann [l] who omits 
the effect of spacing between adjacent tubes, the 
effect of radiation at the tube inner surface is 
neglected and this can be considerable at high 
coolant temperatures. 

This present study includes inter-radiation at 
the tube inner surface and takes account of the 
varying view angle at the outer surface. Two 
kinds of radiating source are considered. In the 
first case, equations are derived for an infinite 
plane radiating source and in the second these 
are modified to become applicable to a cylindrical 
source. The method is quite general in that it 
can be applied to tubes of different dimensions 
and also takes into account the effect of spacing 
between tubes. 

A program incorporating the derived equations 
has been written for a digital computer and gives 
the steady-state temperature when tubes are 
heated by an infinite plane radiating source, 
representing a flame. The resulting temperatures 
from a typical set of data have been plotted 
graphically and the resulting isothermal lines 
shown. 

It was suggested by a referee that mention be 
given to an approximate analytical solution to 
the problem and to this end Section 5 has been 
included. Results have been obtained from both 
numerical and analytical solutions and graphs 
are presented in Fig. 4 which compare the tube 
surface temperature profiles obtained from each 
method. 

2. THEORETICAL CONSIDERATIONS AND 
ASSUMPTIONS 

When a row of tubes is exposed to uniform 
radiation from a radiating source the heat flux 
around a tube outer surface will be non-uniform. 
The equations derived in the following are 
applicable to an infinite plane radiating source, 
as for example, can be assumed to be the case 
when a flame completely fills a combustion 
chamber (Fig. 1). However, with suitable modi- 
fications any type of radiating source can be 
accommodated; and Appendix 2 outlines the 
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Flame side 

/ I , , , , , 
Bockground 

FIG. 1. Cross-section through three tubes showing notation used in analysis. 

equations for a cylindrical source which can be 
assumed to be the case of a cylindrical flame 
enclosed in a square combustion chamber. 

In the following, internally cooled tubes are 
considered which are subjected to external 
radiation whose intensity varies with angular 
co-ordinate only. Heat by direct radiation from 
a flame and diffused radiation from a back- 
ground arrives at the tube outer surface and is 
conducted through the tube wall to the inner 
surface. At the inner surface the heat is dissipated 
by convection to a coolant. Also inter-radiation 
takes place between parts of the tube inner sur- 
face that are at different temperatures (Fig. 2). 
The effect of tube spacing is considered and the 
amount of diffused radiation decreases as the 
spacing between tubes decreases, and becomes 
zero when tubes touch each other. 

The following assumptions are made: 

(1) The convective heat transfer to the tube 
outer surface is small in comparison with 
the radiative heat transfer (probably less 
than 5 per cent) and therefore can be 
neglected. 

(2) The flame radiates as an opaque Lamber- 
tian surface at uniform temperature. 

(3) The background temperature is uniform. 
(4) Heat flow along the tube length is small 

H.M.-Y 

and can be neglected. Thus, conduction 
through the tube wall is confined to two 
dimensions. 

(5) Radiation between the tube inner surface 
and the coolant can be neglected. 

(6) The temperature distribution has an axis 
of symmetry, represented by the line 
through the tube centre and perpendicular 
to the line which joins the centres of 
adjacent tubes. 

(7) The system is completely insulated. 
(8) The background and surface of the tubes 

radiate as black bodies. The flame radiates 
as a grey body. 

3. MATHEMATICAL INTERPRETATION OF 
THE PROBLEM 

A point in the tube wall will be defined by the 
circular polar co-ordinates r, 0 and the axis of 
symmetry defined by 0 = 0 and 0 = V. 

3.1. The heat transfer at the tube outer surface 
The tube outer surface receives radiant heat 

from the flame and from the background as 
shown in Fig. 2. By considering an elementary 
area on the tube outer surface and equating the 
radiant heat gained by the area to the heat 
conducted away from the area, the boundary 
condition at the tube outer surface is established. 
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DIRECT RADIATION 

CONDUCTlON 

fNTER -RADIATION 

The condition, as derived in Appendix 1.1 
becomes 

0.50 {AFM [l - cos al(e)] [2-;4 

- T”*(Rr, 8)] -I- ABM [l - CDS W(B)] 
I (1) 

The first term on the left-hand side of equation 
(1) expresses the radiant heat flux between the 
3ame and the tube outer surface, and the second 
term the radiant heat flux between the back- 
ground and the tube outer surface. The right- 
hand side expresses conducted heat flux from 

the tube outer surface towards the tube inner 
surface. 

3.2. The heat transfer at the tube inner surface 
Heat arriving at the tube inner surface is led 

away by convection to the coolant. Also there is 
inter-rad~a~jon between those parts of the surface 
which are at different temperatures (Fig. 2). By 
establishing a heat balance for an elementary 
area on the tube inner surface the boundary 
condition at the tube inner surface is obtained. 
The heat received by the area due to conduction 
and the radiation from other parts of the surface 
is equated to the heat taken away by convection 
to the coolant and radiation from the area. As 
shown in Appendix 1.2 this reduces to 
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h[T(R2,@ - Tc] + 0.5 &fLwJ 

[2T*4(R2,q - i T*4(R2, v,) 

I r=R2 J 

On the left-hand side of equation (2) the first 
term is the heat flux to the coolant by convection 
and the second term is the inter-radiation 
between the parts of the tube surface which are 
at different temperatures. The right-hand side 
expresses heat flux arriving at the tube inner 
surface by conduction. 

3.3. Heat conduction through the tube wall 
For transient conditions, the temperature dis- 

tribution in the tube wall is given by the solution 
to the equation of heat conduction in two 
dimensions [3]. This is expressed mathematically 
by 

1 aT(r, e) 
V2T(r, 0) = ; __- at 

Also the solution to equation (3) must satisfy 
the boundary conditions, i.e. equations (1) and 
(2), in which the flame and coolant temperature, 
and the emissivities can be (but are not neces- 
sarily) functions of time. 

In the steady state the right-hand side of 
equation (3) is zero and the equation reduces to 
the Laplace equation in two dimensions. In 
circular polar co-ordinates, this is 

PT(r, 0) 
W 

+ 1 aT(r, 0) 
r ar 

+ 1 a2T(r, 0) ~ = 0 (4) 
r2 a82 

The solution to this equation must also satisfy 
the boundary conditions and in this case the 
flame and coolant temperatures and the emis- 
sivities, in equations (1) and (2) are constants. 

For both transient and steady-state conditions, 
the assumption that the temperature distribution 
is symmetric about the axis defined by 0 = 0 
and 8 = n is expressed by the relationship 

T(r, 19) = T(r, 2rr - 0) (5) 

In order to satisfy the boundary condition 
at the tube outer surface, i.e. equation (l), the 
background temperature must be known. 

3.4. Calculation of the background temperature 
The background temperature which depends 

upon the flame temperature will also depend 
upon the spacing between adjacent tubes. By 
performing a heat balance between the heat 
radiated from the flame to the background and 
the heat radiated from the background to the 
tube outer surface, the background temperature 
can be calculated. The heat balance, which is 
derived in Appendix 1.3 finally reduces to 

(1 - P)AFE [Ti4 - T;7 

= O-5/3 AEM j [l - cos as(e)] (6) 

r&4 - T*4(R~, e)] de I 
forO<p< 1. 

The left-hand side of equation (6) expresses 
the radiant heat flux from the flame to the back- 
ground, and the right-hand side the radiant heat 
flux from the background to the tube outer 
surface. 

It should be noted that as B tends to unity, i.e. 
the case of tubes touching, so the left-hand side 
of equation (6), which is the radiant heat flux 
from the flame to the background, tends to zero. 

4. METHOD OF SOLUTION 

A numerical solution to the derived equations 
can be obtained by dividing the tube cross- 
section into a polar grid of discrete points and 
replacing the heat flux equation by finite- 
difference approximations to give a set of 
simultaneous algebraic equations which can be 
solved by iterative methods [4, 51. One such 
method has been programmed for solution on 
the I.B.M. 7090 digital computer. This uses 
central finite-difference formulae, the two point 
formula for the first derivatives and the three- 
point formula for second derivatives. Due to the 
assumed symmetry of the problem only one half 
of the tube cross-section was considered. 

Initially, values of temperature at the four 
corner points of the grid and a value for the 
background temperature are assumed; from 
these assumed values, values at each nodal point 
are estimated. This enables the integral appearing 
in the boundary equation at the tube inner 
surface, equation (2), to be evaluated numerically 
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using Simpson’s rule. By iteration new values of 
temperature are then obtained for all the nodal 
points of the mesh and, by using equation (6) 
a new value for the background temperature 
is obtained. 

The cycle of iteration is repeated until con- 
vergence of the temperature values is obtained. 
Due to the non-linearity of the equations at the 
boundaries, it is possible for the temperature 
values to diverge and, in order to distinguish 
such a case, a test on the convergence has been 
included into the program. 

The accuracy of the temperature values 
obtained is dependent upon the chosen number 
of nodal points in the grid. In general, the 
accuracy increases as the number of nodal 
points is increased. 

Results from the program have been obtained 
and Fig. 3 shows the temperature isothermals 
resulting from a typical set of data. 

Flame 1350°C 

614 'C 

425'C 

Background 430°C 

FIG. 3. Isothermal lines in the cross-section of a tube. 

5. APPROXIMATE ANALYTICAL SOLUTION 

An approximate solution can be obtained 
analytically by assuming that the temperature 
distributions on the tube boundaries can be 
represented as Fourier expansions. Due to the 
assumed symmetry of the problem only cosine 
terms need to be considered and by including 

only the first two terms in the Fourier series 
further approximation is obtained. Thus the 
outer and inner surface temperatures of the tube 
are represented respectively by 

T(Rr, 0) = ‘40 + Al cos 0 

T(&?,l9) = Bo + Bl cos 0 

Within the tube wall the temperature is given 
by the solution to the partial differential equation 
(4), which can be obtained in terms of the above 

Flame temperature 1350°C * NumerIcal solution 

Coolant temperature 36O“C 0 Approx. solution 

-Tube outer surface 

--Tube inner surface 

650 

600 
A 430°C Background 
0 4gB°C temperature 

500 
-b.. 

‘h 

‘\% L \ 400 '\ 

p=o.99 

300 

650 
* 
0 600 

A 884 OC Background 

: 
a 8960C temperature 

z 
.% 500 

E 
P 
= 
cl 400 
z 

d 

; 300 

n 1073~~ Background 
0 ,077 0C temperature 

/oJ F=0’5 , ( / 

0 40 80 I20 16cj 

Angular dlstonce, deg 

FIG. 4. Comparison of numerical and approximate 
solutions for tube surface temperature profiles. 
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constants by using the method of the separation 
of variables. Thus, when the values of the 
constants are known, the temperature at any 
point of the tube cross-section can be obtained. 

To determine the constants Ao, Al, Bo, Br, 
four independent equations are required. Two 
such equations are derived by forming integrated 
heat flux balances on the inner and outer surfaces 
of the tube. At the inner surface the inter- 
radiation effect is included in the value of the 
heat-transfer coefficient, to ease solution. The 
additional equations are obtained by performing 
a local heat flux balance on both inner and outer 
surfaces of the tube at either of the positions 
f?=Oore=n. 

Using both the numerical and analytical 
solutions, tube temperature distributions have 
been evaluated for several sets of data and 
temperature profiles at the tube inner and outer 
surfaces are shown in Fig. 4. These results 
indicate that the approximate analytical solution 
will gain in accuracy as the temperature differ- 
ence between the radiating source and back- 
ground, which varies with the spacing between 
tubes, decreases. 

6. CONCLUSIONS 

Examination of results obtained from several 
sets of data shows the credibility of this method 
of temperature determination, and in view of this 
it is concluded that the method can be used as a 
basis for the derivation of the thermal stress 
distribution. 

Comparison of the results from bothnumerical 
and approximate methods of solution shows that 
greater accuracy is obtained from the numerical 
method. Differences between the values obtained 
from each method decrease as the temperature 
between the source and background decreases. 
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APPENDIK 1 

Derivation of Formulae 
1.1. The boundary condition at the tube outer 

surface 
The flame radiates heat to the tube outer 

surface and also to the background where it is 
re-radiated to the tube outer surface. By con- 
sidering an elementary area, denoted by dF1, on 
the tube outer surface and equating the radiant 
heat input from the field to conduction through 
the tube wall, the condition to be satisfied at the 
tube outer surface is established. 

Consider dFr at the centre of the base of a 
unit hemisphere, with the base lying in the 
tangent plane to the surface at dFr (Fig. 5). The 
radiant heat emitted from an elementary surface 
area of the flame which strikes dFr is equivalent 
to the radiant heat striking dF1 from the central 
projection of the elementary surface area of the 
flame onto the surface of the hemisphere. Denote 
this projected surface area by dFs. Then the 
radiant heat from dFa to dFr [3] is given by 

d2qzl = I2 dFs cos; dFr cos T (7) 

FIG. 5. Unit hemisphere indicating the determination of 
the “plane” view angle. 
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By summing the radiant heat emitted from all 
areas, such as dFs, which are contained in that 
part of the surface of the hemisphere through 
which the flame is viewed by dFI, the radiant 
heat from the flame to dF1 is found. 

Choose at dFl as origin a rectangular co- 
ordinate system with the x-axis lying in the base 
plane of the hemisphere, the y-axis lying along 
the outward drawn normal at dF1 and the z-axis 
lying parallel to the tube axis (Fig. 5). Using 
spherical polar co-ordinates r, 8, q~ with P = 1, 
the following relationships are satisfied: 

The values of al, a3 and T will depend upon 
the position of dF1. If circular polar co-ordinates 
r, B are used to define a point in the tube wall, 
then al and us are both functions of 8, and T 
is a function of RI and ~9 (Fig. I). 

Thus the total heat flux input to dFr, which 
is the sum of the heat flux due to the flame and 
that due to the background becomes 

0.50 (APM [l - cos al(e)] [Ti4 - T*4(R1, e)] 

+ ABM[~ - cos a3(8)l [Tz4 - T*a(Rl, e)jf 

(W 
dFz = sinBdt?d y At the tube outer surface the heat flux conducted 

cos r = sin I3 sin v through the tube wall is given by 

Substituting for dFs and cos r in equation (7), 
yields 

i r-h 

(11) 

daqal = Is dF1 sin cp dq sins 6’ do (8) 

Thus the radiant heat emitted from the flame 
which strikes dFr is found by integrating equa- 
tion (8) with respect to 6’ and q, where 0 extends 
over the range 0 to v and v over the range 0 to 
al (Fig. 5). al is the value of ‘p through which 
the flame is viewed by dF1 and it is termed the 
“plane” view angle of the flame at dF1. 

On integration and substitution of the limits, 
this becomes 

Thus, equating expressions (10) and (11) 
yields the boundary condition to be satisfied at 
the tube outer surface as 

0.50 {AFM [l - cos al(e)] [Ti4 - T*4(R~, e)] 

+ AEM[~ - cos as(e)] [T14 

1 r=Rl 

dqal = 0.5 12 dFr ~(1 - cos al) 
1.2. The boundary condition at the tube inner 

From the Stefan-Boltzmann law [I] 

1s = (U/T) AFM Ti4 

Thus 

surface 

dqzl = 0.5~ AFM 2-;* (1 - cos al) dR 

Similarly, the radiant heat from dFr to the 
flame, dqra, is expressed as 

dqlz = 0.5~ AFM IT*4 (1 - cos al) dF1 

Thus the radiant heat flux into dF1 from the 
flame, which is given by (dqzl - dqlz)/dK 
becomes 

0.5~ AFM (1 - cos al) (T;4 - T*4) 

Similarly the radiant heat flux into dFr from the 
background is given as 

0.5~ ABM (1 - cos a3) (T;’ - T*4) (9) 

At the inner surface heat is transferred to the 
coolant by convection and there is also inter- 
radiation heat transfer between those parts of 
the surface at different tem~ratures. The con- 
dition to be satisfied here is derived by consider- 
ing an elementary area, denoted by dFt, on the 
tube inner surface and equating the heat input 
due to conduction and radiation from the 
remaining area of tube inner surface to heat 
taken away by convection and radiation. 

To calculate the heat input to dl;i by radiation 
from the remaining area of the tube inner surface, 
consider another elementary area on the inner 
surface not necessarily in the same plane, 
denoted by dF5, and calculate the radiant heat 
emitted by dF3 which strikes dFz (Fig. 6). By 
integrating dF1 over the inner surface area, the 
radiant heat input to dA is found. 
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FIG. 6. Inner surface of a tube showing co-ordinate 
system. 

Consider dFt at the centre of the base of a 
unit hemisphere with the base lying in the 
tangent plane to the surface at dFi. The radiant 
heat input to dF$ from dFj is given by 

d2qrt = Z1 dF1’ cos @r/2) dF$ cos T (12) 

Zf is given in terms of the absolute temperature 
Tj of dFf by the equation 

ZI = (u/r) AMM Tf*4 

Expressions for dFj’ and T are found by 
considering a rectangular Cartesian co-ordinate 
system at dFt as origin in which the x-axis lies 
in the base plane of the hemisphere, the y-axis 
is the outward drawn normal to dFj and the 
z-axis lies parallel to the tube axis (Fig. 6). Using 
spherical polar co-ordinates r, 8, v with r = 1, 
gives 

dFj’ = sin 6 d9 dp, 

cos 7 = sin 19 sin v 

Also the total radiant heat input to dFt is 
found by integrating equation (12) over the 
surface area of the hemisphere. Substituting for 
II, dF5’ and cos T this becomes 

dqjc = AMM dl;t i TT4 sin q dp, 7 sin2 0 d0 
0 0 

TT4 is under the integral sign since its value is a 
function of q, and, of course Rz. Thus replacing 
Tj by T(R2, y) and performing the integration 
with respect to 0 yields an expression similar to 
that given by Saltzmann [l]. 

This is 

dqjt = 0-50 AMM dFt i TT4(Rz, 9) sin q~ dpl (13) 
0 

Using the Stefan-Boltzmann law and noting 
that the temperature of dF$ is a function of the 
circular polar co-ordinates r and 0, the radiant 
heat flux from dFj is given as 

(u!~) A MM T*4(Rz, 6) (14) 

Also, if the coolant temperature is assumed 
constant, the heat flux transferred from dlsi by 
convection is expressed as 

@V&e) - Tel (15) 

Finally, there is the heat flux received by dF{ by 
conduction, this is given as 

(16) 

Using expressions (13)-(16) and equating radiant 
heat flux input to radiant heat flux output yields 
the condition to be satisfied at the inner surface. 
This becomes 

h[T(Rz, 0) - Te] + 0.5~ AMM[~T*~(R~, 6) 

- i T*d(Rz, IJI) sin y dpl] = h%j 

I r-R2 

1.3. The equation to determine the background 
temperature 

The background temperature is found by 
equating the heat input to the background due 
to radiation from the flame, to the heat output 
due to radiation between background and tubes. 
Since uniform flame and background tempera- 
tures are assumed, only one tube need be con- 
sidered (Fig. 1). If s denotes the distance 
between the centres of adjacent tubes, then for 
unit length of flame in the direction of the tube 
axis, the radiation between flame and background 
is, by the Stefan-Boltzmann law, 

(s - 2R1) UAFB [Ts4 - Tz4] (17) 

Now expression (9) gives the heat flux from the 
background to an elementary area on the tube 
outer surface. This is 

0.5~ ABM(~ - cos as) (T14 - T*4) 
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For unit length of tube, an elementary area on 
the tube outer surface is RI dB. Remembering 
that as and T depend on 8, then the radiation 
into the elementary area becomes 

0.50 ABM [ 1 - cos as@)] [Ti4 - T*4(R1, S)] RI do 

Thus the total radiation between the background 
and the tube outer surface is 

0.50 ABMR~ y[l - cos a3(0)] 

0 

[T;j4 - Te4(R1, 0)] d0 (18) 

Equating this expression with (17), yields 

(S - 2Rr)&~ [T:4 - T<4] = 0.5 RI ABM 

x 7 [I - cos as(e)] [Ti4 - T*4(R1, e)] d6 
0 

Dividing each side by s gives, since p = 2 RI/S, 

(1 - /~)AFB [Ti4 - Ti4] = 0*25,8 ABM 
2, 

x J [l - cos u3(0)] [T14 - T*l (RI, e)] d8 (19) 
0 

From the expression for 1 - cos us(e), given 
in Appendix 1.4 it can be seen that 

] [l - cos cz3(0)] [Ti4 - T”4(R1, e)] d0 = 
0 

2 % [I - cos aa( [Ti4 - TS4(R1, 0)] d0 

Thus expression (19) finally becomes 

(1 - /~)AFB [T14 - T;4] = O-5/3 ABM 

x s" [l - cos u3(4] [Ti4 - T4*(R1, 0)] d0 
0 

1.4. Formulaefor 1 - cos al(e) and 1 - cos as(e) 
Values for 1 - cos ccl(e) and 1 - cos as(e) will 

depend upon the value of 8. By considering a 
point (RI, 0) on the tube outer surface and using 
known trigonometric relationships, the following 
expressions for 1 - cos al(e) and 1 - cos a3(8) 
are derived : 

1 - cos cc@) = 1 

4c;s8{;s-y8)(+{1 -F) , 

4 4 

l +B,-BSine 

for 0 < 19 6 (7r/2) + 6 

= 0 for (n/2) + 8 < 0 6 r 

1 - cos us@) = 1 - cos ar(?T - 0) 

for0 < 19 < 7r 

where 6 = cos-1 p. 

APPENDIX 2 

Modifications to formulae for a cylindrical flame 
enclosed by a square combustion chamber 

The equations derived in Appendix 1 are 
applicable, as stated in Section 2 to an infinite 
plane radiating source representing the flame. 
This is the case, for instance, when a flame 
completely fills a combustion chamber. How- 
ever, it is possible to include other flame shapes 
by considering the geometrical configuration 
of the system and appropriately modifying the 
derived equations. 

Consider for example the case of a cylindrical 
flame situated at the centre of a square com- 
bustion chamber, the flame being represented by 
a cylindrical radiating source. Here the boundary 
condition at the tube outer surface and the back- 
ground temperature are affected by the geo- 
metry of the system. 

Considering the tube situated at the middle 
of one side of the combustion chamber (so 
as to retain the condition of symmetry), the 
modifications are as follows: 

2.1. The boundary condition at the tube outer 
surface 

The basic form of the equation to be satisfied 
at the tube outer surface remains the same but 
the formulae which determine 1 - cos al(e) are 
altered. Let the new expression for 1 - cos ~(0) 
be denoted by 1 - cos al(e). By considering a 
point (RI, 0) on the tube outer surface, it can be 
shown that for 0 < 0 < y 

1 - cos cc@) = (32G2/n2) 

G is called the geometric factor and is defined 
as the ratio of the flame perimeter to the com- 
bustion chamber perimeter. y is given by the 
equation 

y = cos-l {4G/n} 

and is the limiting value of t3 beyond which the 
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amount of flame viewed from the point (RI, 0) 
decreases as 13 increases. 

For y < 0 < n there are two possibilities, 
either (a) 

1 - cos ~(0) < 1 - cos al(e) 

or (b) 

1 - cos ,(e) < i - cos ul(e) for y <: e < e1 

= 1 - cos al(e) for e = e1 

2 1 - cos al(e) for el < e Q T 

Where ,(e) denotes the “plane” view angle of 
the flame at the point (RI, 0) and is given by the 
equation 

1 - cosP(e) = 1 - (1 - (16~s/~sjf 

sin 8 + (4G/r) cos e 

If (a) then 

1 - cosal(B) = 1 - cOsP(e) 

fory<e<r-y 

= 0 for77-rQB<7r 

If(b) then 

1 - cos m = 1 - cos P(e) 

for y < e < e1 

= 1 - cos al(e) 

fore1 c e < (r/2) + 6 

= 0 for (7/2) + 6 6 8 < n 

In the formulation of the above expressions it 
has been assumed that the tube diameter is very 
small in comparison to the width of the chamber 
sides, so that the ratio of tube diameter to the 
width of the chamber side is taken to be zero. 

The expression to be satisfied at the tube 
outer surface becomes 

0.5~ j A~&~ [l - cos al(s)] ]~~*4 - T*~(R~, e)] 

-k ABM [l - COS a3(8)] [T;4 - T*4(Rl, e)] 
> 

= x aT(r, 0) 
ar r=Rl 

(20) 

2.2. Calculation of the background temperature 
The background temperature is found, as 

before, by equating the radiative heat input 
to the radiative heat output at the background. 
However, in this case, since flame and com- 
bustion chamber perimeters differ, total radia- 
tion must be considered. 

Let D denote the width of each side of the 
combustion chamber, d the flame diameter, and 
N the number of tubes lining the combustion 
chamber, then the flame radiation/unit area of 
background is given as 

(3 - 2Ri)N nd aAw TFe4 
40 40 

The radiation/unit area from the background is 

6 - 2R1)NcAFBT*4 _ 

40 B 

Thus, the net radiation/unit area input to the 
background becomes 

(s - 2R1)NuAFB nd 
40 

4. T;4 - Ti4 
I 

(21) 

Using the expression (18), the radiation/unit 
area exchanged between the background and the 
outer surface of the tubes becomes 

O-5 (N/4D) a ABMRI ‘f [l - cos as(e)] 

[Ti4 - Ts4(R1, e)] de (22) 

Equating expressions (21) and (22), and simpli- 
fying gives 

(S - 2Ri) ApB [(nd/4D) Ti4 - Tz] = 

RI ABM j [i - COS as(o)] [g4 - T*4(R1, o)] de 
0 

Dividing both sides by s and, since G is the ratio 
of flame perimeter to the perimeter of the com- 
bustion chamber, substituting G for rrd/4D gives 
the expression for the calculation of the back- 
ground temperature. This is 

(1 - /3) AFB [GT:4 - Ti4] = 

0.5/I ABE j [l - cos as(e)] 
0 

[Tz - T*~(R~, e)] de (23) 

Thus, the temperature distribution prevailing 
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in the cross-section of the tubes which are tion for the tubes which are situated in the 
situated at the mid-point of the sides of the corners of the combustion chamber, substitute 
combustion chamber is given by solving equa- Gd2 for G in equation (23) and in the expressions 
tions (20) and (23) together with equations (21, for 1 - cos 3 and y and solve together with 
(4) and (5). To obtain the temperature distribu- equations (2), (d), (5) and (20). 

R&an&--On expose une methode de determination de la distribution de temperature dans un tube 
refroidi interieurement et expose a un rayonnement non uniforme autour de sa surface exterieure. 
La transport de chaleur radial et circonferentiel dam la paroi du tune est Ctudie et l'on tient compte du 
rayonnement de la surface inttrieure du tube en plus de la convection. On a ajoute Bgalement l’influence 
de l’espacement des tubes sur la distribution de temperature. 

On a &it les equations applicables au cas de tubes exposes au rayonnement dune flamme qui peut 
&tre assimil& a une source plane infinie. En annexe, les equations sont modifiees pour s’appliquer 
au cas dune flamme assimilee a une source cylindrique. 

En employant des approximations de differences finies et une iteration, une methode de resolution 
en regime permanent a et& Cbauchee. Elle a ete programmQ sur un calculateur numerique et l’on a 
present& les isothermes correspondant a un ensemble don&e de paramittres. 

On donne egalement un apercu d’une solution approchee qui est en bon accord avec la solution 
numerique lorsque la difference de temperature entre la source de rayonnement et l’environnement 

est faible. 

Zusanunenfassunt-Zur Bestimmung der Temperaturverteilung in einem innen gekiilhten Rohr 
dessen Siusserer Umfang einer ungleichmlssigen Strahlung unterworfen ist wird eine Methode ange- 
geben. Der W%rmetransport in der Rohrwand in Radial- und in Umfangsrichtung ist berticksichtigt 
und an der inneren Rohroberfllche wird zur Konvektion ein Strahlungsanteil zugeschlagen. Auch 
ist der Einfluss des Raumes zwischen den Rohren auf die Temperaturverteilung in die Betrachtung 
einbezogen. 

Die abgeleiteten Gleichungen gelten ftir Rohre welche einer Flammstrahlung ausgesetzt sind die von 
einer unendlichen ebenen Ouelle zu kommen scheint. Im Anhang sind die Gleichungen ftir die von einer 
zylindrischen Quelle herr&renden Strahlung modifiziert. - 

Mit Hilfe der Nlherungen durch endliche Differenzen und Iteration erhalt man eine Losungsmethode 
fiir den stationLen Fall. Die danach auf einer digitalen Rechenmaschine ftir eine Reihe gegebener 
Werte ermittelten Isothermenkurven sind angegeben. Auch eine Naherungsliisung ist wiedergegeben 
die fiir kleine Temperaturdifferenzen zwischen strahlender Quelle und Hintergrund zu guter Uberein- 

stimmung mit der numerischen Lbsung ftihrt. 

AHHoT~uI~~-B cTaTbe npe~nomen MeTOg 0npefieneHmI pacnpegenenan TeMnepaTypbt n 
OXJIaIKnaeMOt II3HyTpM Tpy6e, HapyIKHaR IIOBepXHOCTb KOTOpOtt IIO~BepI'aeTCfl J.&etiCTBUI0 

HeOJIHOpO~HOrO U3JIy=IeHIWI. PaCCMaTpIIBaeTCR paJWaJIbHaII M yI'JIOBaR TeIIJIOIIpOBOJVIOCTb B 

CTeHKe Tpy6Ldn HaBHyTpeHHeteeIIOBepXHOCTII.~OMHMO KOHBeKnMMyYWI'bIBaeTCRB3aMMHOe 

IlanyseHlle. YWTbIBaeTCn TaKH(e BJIIIHHIIe paCnOn0xeHIIfI Tpy6bl Ha paCIIpewIeHIl3 TeW- 

nepaTypbt. 
BbIB0~0H~ypaBH0HEIR,npLlMeIiEiMbI3KCJIy9aH)B03~0~CTBURHa Tpy6n II3JIyWZHIWfIIJIaMeH11, 

KOTODOe MOmHO IIDeACTaBIITb B BHAe 6eCKOHeYHOrO IIJIOCKOrO IICTO'IHHKa. B npIIJIO?KeHIIII 

ypaB;IeHIIR MO~II~&IpOBaHbI npHMeHIITeJIbH0 K CJIyqaI0 IIJIaMeHII,IIpe~CTaBJK?HHOrO B BUAe 

IJHJIHHApHWCKOrO IICTOqHIIKa. 

c IIOMOmbI0 aIIIIpOKCHManHH KOHeYHbIMR pa3HOCTnMII II IIT0p3IWI p33p360TaH MeTOn 

pellreHmI cTannonapnofi aagasn. 3aAasa aanporpaMMuposana Ann pemenmr Ha cseTnoti 
Mamnne. Ha ocnone nonysennbtx Aannbtx npeAcTasnenbt peaynbTnpytotiure n30TepMarecmre 
KpIIBbIe. 

Bbmegeuo npH6JIIUKeHHOe pemeane, Aaromee xopomee cornacne c ~ricnennbrn pemeaneu 
npw Ke6OJIbm0& pa3uocTn TeMnepaTyp MemAy KCTOYHHKOM KaJIy4emifl II $oHoM. 


