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Abstract—This paper presents a method of determining the temperature distribution in an internally
cooled tube which is exposed to non-uniform radiation around its outer surface. Radial and circum-
ferential heat transfer in the tube wall is considered and, at the tube inner surface, inter-radiation is
accounted for in addition to convection. Also, the influence of tube spacing on the temperature
distribution is included.

Equations are derived which are applicable when tubes are exposed to radiation from a flame which
can be represented by an infinite plane source. In an appendix the equations are modified to apply to
the case of a flame represented by a cylindrical source.

By use of finite-difference approximations and iteration, a method of solution to the steady state
problem is outlined. This has been programmed for solution on a digital computer and the resulting
isothermal curves arising from a given set of data are presented.

Also, an approximate solution is outlined which gives good agreement with the numerical solution

when the difference in temperature between the radiating source and background is small.

NOMENCLATURE h, internal heat-transfer coefficient of

A, emissivity governing the radiant the coolant;

heat transfer from the background I, intensity of normal radiation from

to the tube metal; dFz;
AFg, emissivity governing the radiant I, intensity of normal radiation from

heat transfer from the flame to the dFy;

background; N, number of tubes lining the com-
Arm, emissivity governing the radiant bustion chamber;

heat transfer from the flame to the q, heat flow;

tube metal; r, radius; circular polar co-ordinate;
Ay, emissivity governing the radiant Ry, tube outer radius;

heat transfer between different R, tube inner radius;

parts of the tube inner surface; S, distance between the centres of
D, width of each side of the square adjacent tubes;

combustion chamber; t, time;
d, flame diameter; T, tube absolute temperature at dF; ;
dF,, dFe, elementary surface areas on the Tg, radiating absolute temperature of

tube outer surface; the background;
dF;, dF;, elementary surface areas on the T, coolant absolute temperature;

tube inner surface; Tr, radiating absolute temperature of
dF,', projected area of dF; onto the the flame;

surface of a unit hemisphere; T; T(Rz, ), tube absolute tempera-
G, geometric factor—the ratio of ture at dFy;

flame perimeter to combustion (r, 6), absolute temperature in the tube

chamber perimeter;
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wall at the point defined by r, 8;
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T
% .
d = 100°
X, ¥, z, rectangular Cartesian co-ordinates.
Greek symbols

a, thermal diffusivity of the tube
material;

a1 = a1(f), “plane” view angle of the
flame at the point (Ry, §);

as = ag(f), “plane” view angle of the

background at the point (Ry, 6);

a1(0), “plane” view angle of the flame at
the point (Ry, ) for a cylindrical
flame;

B, ratio of the tube outer diameter
to the distance between centres of
adjacent tubes;

Y, angle whose cosine is 4G/x;

3, angle whose cosine is 8;

0, circular and spherical polar co-
ordinate; integration variable;

A, thermal conductivity of the tube
metal;

w0, “plane” view angle of the flame
at the point (R, §) for a cylindrical
flame;

G, Stefan-Boltzmann constant;

T, angle between the line joining dFy

to dFy and the outward drawn
normal to dFi; angle between the
line joining dF; to dF; and the
outward drawn normal to dF;;
P, spherical polar co-ordinate; inte-
gration variable;
Laplacian operator in circular
polar co-ordinates.

Ve,

1. INTRODUCTION

IN MODERN steam power plant an increasing
proportion of steam superheat is supplied by
radiant heat transfer, A knowledge of the ther-
mal stresses within the walls of tubes used for
this purpose is of great interest, particularly as
temperature and heat flux move to more advanced
conditions.

In order to calculate the thermal stresses, a
knowledge of the prevailing temperature field is
the first requirement. Most methods of calculat-
ing the temperature distribution within a tube
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wall given in the literature assume a known
radiation heat transfer at the tube outer surface
and no account is made of the view angle of a

point on the outer surface (e.g. references [1] and
T?]\ Also. anart from Salzmann [11 wha amite

SRV, Qpay 2V Laldidlaniil i) wilU OIS

the effect of spacing between adjacent tubes, the
effect of radiation at the tube inner surface is
neglected and this can be considerable at high
coolant temperatures.

This present study includes inter-radiation at
the tube inner surface and takes account of the
varying view angle at the outer surface. Two
kinds of radiating source are considered. In the
first case, equations are derived for an infinite
plane radiating source and in the second these
are modified to become applicable to a cylindrical
source. The method is quite general in that it
can be applied to tubes of different dimensions
and also takes into account the effect of spacing
between tubes.

A program incorporating the derived equations
has been written for a digital computer and gives
the steady-state temperature when tubes are
heated by an infinite plane radiating source,
representing a flame. The resulting temperatures
from a typical set of data have been plotted
graphically and the resulting isothermal lines
shown,

It was suggested by a referee that mention be
given to an approximate analytical solution to
the problem and to this end Section 5 has been
included. Results have been obtained from both
numerical and analytical solutions and graphs
are presented in Fig. 4 which compare the tube
surface temperature profiles obtained from each
method.

2. THEORETICAL CONSIDERATIONS AND
ASSUMPTIONS

When a row of tubes is exposed to uniform
radiation from a radiating source the heat flux
around a tube outer surface will be non-uniform.
The equations derived in the following are
applicable to an infinite plane radiating source,
as for example, can be assumed to be the case
when a flame completely fills a combustion
chamber (Fig. 1). However, with suitable modi-
fications any type of radiating source can be
accommodated; and Appendix 2 outlines the
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Flame side

Background

FiG. 1. Cross-section through three tubes showing notation used in analysis.

equations for a cylindrical source which can be
assumed to be the case of a cylindrical flame
enclosed in a square combustion chamber.

In the following, internally cooled tubes are
considered which are subjected to external
radiation whose intensity varies with angular
co-ordinate only. Heat by direct radiation from
a flame and diffused radiation from a back-
ground arrives at the tube outer surface and is
conducted through the tube wall to the inner
surface. At the inner surface the heat is dissipated
by convection to a coolant. Also inter-radiation
takes place between parts of the tube inner sur-
face that are at different temperatures (Fig. 2).
The effect of tube spacing is considered and the
amount of diffused radiation decreases as the
spacing between tubes decreases, and becomes
zero when tubes touch each other.

The following assumptions are made:

(1) The convective heat transfer to the tube
outer surface is small in comparison with
the radiative heat transfer (probably less
than 5 per cent) and therefore can be
neglected.

(2) The flame radiates as an opaque Lamber-
tian surface at uniform temperature.

(3) The background temperature is uniform.

(4) Heat flow along the tube length is small

HM.—Y

and can be neglected. Thus, conduction
through the tube wall is confined to two
dimensions.

(5) Radiation between the tube inner surface
and the coolant can be neglected.

(6) The temperature distribution has an axis
of symmetry, represented by the line
through the tube centre and perpendicular
to the line which joins the centres of
adjacent tubes.

(7) The system is completely insulated.

(8) The background and surface of the tubes
radiate as black bodies. The flame radiates
as a grey body.

3. MATHEMATICAL INTERPRETATION OF
THE PROBLEM
A point in the tube wall will be defined by the
circular polar co-ordinates r, 6 and the axis of
symmetry defined by 6 = 0 and 6 = =.

3.1. The heat transfer at the tube outer surface
The tube outer surface receives radiant heat
from the flame and from the background as
shown in Fig. 2. By considering an elementary
area on the tube outer surface and equating the
radiant heat gained by the area to the heat
conducted away from the area, the boundary
condition at the tube outer surface is established.
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Fi6. 2. Cross-section through a tube showing processes of heat transfer considered.

The condition, as derived in Appendix 1.1
becomes

0-5¢ {Ara [l ~ cos ay(6)] [T3*
— T*YRy1, )] + Apur [l — cos as(8)]

(T34 — T*4(Ry, )]} = A oT(r, )

M

3" r=R 1

The first term on the left-hand side of equation
(1) expresses the radiant heat flux between the
flame and the tube outer surface, and the second
term the radiant heat flux between the back-
ground and the tube outer surface. The right-
hand side expresses conducted heat flux from

the tube outer surface towards the tube inner
surface.

3.2. The heat transfer at the tube inner surface

Heat arriving at the tube inner surface is led
away by convection to the coolant. Also there is
inter-radiation between those parts of the surface
which are at different temperatures (Fig. 2). By
establishing a heat balance for an elementary
area on the tube inner surface the boundary
condition at the tube inner surface is obtained.
The heat received by the area due to conduction
and the radiation from other parts of the surface
is equated to the heat taken away by convection
to the coolant and radiation from the area. As
shown in Appendix 1.2 this reduces to
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A[T(Rs, 8) — T¢] + 0-5 Arprmo
[2T*4(Ry, ) — | T*¥(Rs, ¢)
(4]

aT(r, 0
sin ¢ dg] = A—_(arr )

@

r=Ro

On the left-hand side of equation (2) the first
term is the heat flux to the coolant by convection
and the second term is the inter-radiation
between the parts of the tube surface which are
at different temperatures. The right-hand side
expresses heat flux arriving at the tube inner
surface by conduction,

3.3. Heat conduction through the tube wall

For transient conditions, the temperature dis-
tribution in the tube wall is given by the solution
to the equation of heat conduction in two
dimensions [3]. This is expressed mathematically
by

vir(r, 6) = 1100 ©

Also the solution to equation (3) must satisfy
the boundary conditions, i.e. equations (1) and
(2), in which the flame and coolant temperature,
and the emissivities can be (but are not neces-
sarily) functions of time.

In the steady state the right-hand side of
equation (3) is zero and the equation reduces to
the Laplace equation in two dimensions. In
circular polar co-ordinates, this is

PT(,6)  1870,6)  1&T(,0) _
or2 r or r2 gez

@

The solution to this equation must also satisfy
the boundary conditions and in this case the
flame and coolant temperatures and the emis-
sivities, in equations (1) and (2) are constants.

For both transient and steady-state conditions,
the assumption that the temperature distribution
is symmetric about the axis defined by 6 = 0
and 6 = = is expressed by the relationship

T(r, 6) = T(r, 27 — 6) (5)

In order to satisfy the boundary condition
at the tube outer surface, i.e. equation (1), the
background temperature must be known.
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3.4. Calculation of the background temperature
The background temperature which depends
upon the flame temperature will also depend
upon the spacing between adjacent tubes. By
performing a heat balance between the heat
radiated from the flame to the background and
the heat radiated from the background to the
tube outer surface, the background temperature
can be calculated. The heat balance, which is
derived in Appendix 1.3 finally reduces to

(I — B)Ars [T3* — T

= 0-58 Agar T [1 — cos ag(0)] ©6)
0

[Te* — T*Y(Ry, 6)] do
for0 < B < 1.

The left-hand side of equation (6) expresses
the radiant heat flux from the flame to the back-
ground, and the right-hand side the radiant heat
flux from the background to the tube outer
surface.

It should be noted that as 8 tends to unity, i.e.
the case of tubes touching, so the left-hand side
of equation (6), which is the radiant heat flux
from the flame to the background, tends to zero.

4. METHOD OF SOLUTION

A numerical solution to the derived equations
can be obtained by dividing the tube cross-
section into a polar grid of discrete points and
replacing the heat flux equation by finite-
difference approximations to give a set of
simultaneous algebraic equations which can be
solved by iterative methods [4, 5]. One such
method has been programmed for solution on
the I.B.M. 7090 digital computer. This uses
central finite-difference formulae, the two point
formula for the first derivatives and the three-
point formula for second derivatives. Due to the
assumed symmetry of the problem only one half
of the tube cross-section was considered.

Initially, values of temperature at the four
corner points of the grid and a value for the
background temperature are assumed; from
these assumed values, values at each nodal point
are estimated. This enables the integral appearing
in the boundary equation at the tube inner
surface, equation (2), to be evaluated numerically
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using Simpson’s rule. By iteration new values of
temperature are then obtained for all the nodal
points of the mesh and, by using equation (6)
a new value for the background temperature
is obtained.

The cycle of iteration is repeated until con-
vergence of the temperature values is obtained.
Due to the non-linearity of the equations at the
boundaries, it is possible for the temperature
values to diverge and, in order to distinguish
such a case, a test on the convergence has been
included into the program.

The accuracy of the temperature values
obtained is dependent upon the chosen number
of nodal points in the grid. In general, the
accuracy increases as the number of nodal
points is increased.

Results from the program have been obtained
and Fig. 3 shows the temperature isothermals
resulting from a typical set of data.

Flame 1350°C

368°C
Background 430°C
Fi1G. 3. Isothermal lines in the cross-section of a tube.

5. APPROXIMATE ANALYTICAL SOLUTION

An approximate solution can be obtained
analytically by assuming that the temperature
distributions on the tube boundaries can be
represented as Fourier expansions. Due to the
assumed symmetry of the problem only cosine
terms need to be considered and by including
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only the first two terms in the Fourier series
further approximation is obtained. Thus the
outer and inner surface temperatures of the tube
are represented respectively by

T(Ry, 0) = Ag + A1 cos 8
T(Rz,0) = By + Bicos?

Within the tube wall the temperature is given
by the solution to the partial differential equation
(4), which can be obtained in terms of the above

Flame temperature 1350°C & Numerical solution

Coolant temperature 360°C o Approx. solution
— Tube outer surface
——Tube inner surface

650~
4 430°C Background
0 496°C temperature

600

500

400

300 L [

6501~

°C

s 884 °C  Bockground

600
o gag°C Temperature

500

400

Tube waoll temperature,

300 L | |

650—
& 1073°C Background

600 o |077°Cc temperature
:A::o\
500—
Ry
400}~
B:o.s
300 ! 1 { |
0 40 80 120 16G
Angular distance, degq

Fic. 4. Comparison of numerical and approximate
solutions for tube surface temperature profiles.
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constants by using the method of the separation
of variables. Thus, when the values of the
constants are known, the temperature at any
point of the tube cross-section can be obtained.

To determine the constants Ao, 41, Bo, Bi,
four independent equations are required. Two
such equations are derived by forming integrated
heat flux balances on the inner and outer surfaces
of the tube. At the inner surface the inter-
radiation effect is included in the value of the
heat-transfer coefficient, to ease solution. The
additional equations are obtained by performing
a local heat flux balance on both inner and outer
surfaces of the tube at either of the positions
8 =0o0rf=m

Using both the numerical and analytical
solutions, tube temperature distributions have
been evaluated for several sets of data and
temperature profiles at the tube inner and outer
surfaces are shown in Fig. 4. These results
indicate that the approximate analytical solution
will gain in accuracy as the temperature differ-
ence between the radiating source and back-
ground, which varies with the spacing between
tubes, decreases.

6. CONCLUSIONS

Examination of results obtained from several
sets of data shows the credibility of this method
of temperature determination, and in view of this
it is concluded that the method can be used as a
basis for the derivation of the thermal stress
distribution.

Comparison of the results from both numerical
and approximate methods of solution shows that
greater accuracy is obtained from the numerical
method. Differences between the values obtained
from each method decrease as the temperature
between the source and background decreases.
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APPENDIX 1
Derivation of Formulae

1.1. The boundary condition at the tube outer
surface

The flame radiates heat to the tube outer
surface and also to the background where it is
re-radiated to the tube outer surface. By con-
sidering an elementary area, denoted by dFi, on
the tube outer surface and equating the radiant
heat input from the field to conduction through
the tube wall, the condition to be satisfied at the
tube outer surface is established.

Consider dF; at the centre of the base of a
unit hemisphere, with the base lying in the
tangent plane to the surface at dF; (Fig. 5). The
radiant heat emitted from an elementary surface
area of the flame which strikes dF; is equivalent
to the radiant heat striking dF; from the central
projection of the elementary surface area of the
flame onto the surface of the hemisphere. Denote
this projected surface area by dFs. Then the
radiant heat from dFs to dF; [3] is given by

ki

2

d2gs1 = Ip dFacos 5 dF; cos 7

()

Fi1G. 5. Unit hemisphere indicating the determination of
the “plane” view angle.
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By summing the radiant heat emitted from all
areas, such as dF;, which are contained in that
part of the surface of the hemisphere through
which the flame is viewed by dFi, the radiant
heat from the flame to dF; is found.

Choose at dFy as origin a rectangular co-
ordinate system with the x-axis lying in the base
plane of the hemisphere, the y-axis lying along
the outward drawn normal at dF; and the z-axis
lying parallel to the tube axis (Fig. 5). Using
spherical polar co-ordinates r, 8, ¢ with r = 1,
the following relationships are satisfied:

dFy =sinfdfd ¢
cos 7 = sin @ sin ¢

Substituting for dFs and cos = in equation (7),
yields
d2gs; = Ip dF; sin ¢ dg sin2 8 dd ®)

Thus the radiant heat emitted from the flame
which strikes dF; is found by integrating equa-
tion (8) with respect to # and ¢, where 0 extends
over the range 0 to = and ¢ over the range 0 to
aj (Fig. 5). a3 is the value of ¢ through which
the flame is viewed by dF: and it is termed the
“plane” view angle of the flame at dF;.

On integration and substitution of the limits,
this becomes

dge1 = 05 I dFy (1 — cos a1)

From the Stefan-Boltzmann law [1]
Iy = (o/m) Apar Tp?
Thus
dgs1 = 0-5¢ Arayr T3 (1 — cos ap) dFy

Similarly, the radiant heat from dF; to the
flame, dqi2, is expressed as

dgqi2 = 0:5¢ App T*4 (1 — cos a1) dFy

Thus the radiant heat flux into dFy from the
flame, which is given by (dg=1 — dqug)/dFy
becomes

050 Arp (1 — cos a) (Tt — T*Y

Similarly the radiant heat flux into dF} from the
background is given as

0-50 Appm (1 — cos ag) (Tt — T*4) )]
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The values of a1, az and T will depend upon
the position of dF;. If circular polar co-ordinates
r, 8§ are used to define a point in the tube wall,
then a; and ag are both functions of §, and T
is a function of R; and 8 (Fig. 1).

Thus the total heat flux input to dFy, which
is the sum of the heat flux due to the flame and
that due to the background becomes

0-5¢ {Arm [l — cos ar(6)] [T5* — T*4(Ry, 6))]

+ Apnm [l — cos ag(O)} [T;* — T*(Ry, )]}
(10)

At the tube outer surface the heat flux conducted
through the tube wall is given by

oT(r, 0)
A= an

r=R;

Thus, equating expressions (10) and (11)
yields the boundary condition to be satisfied at
the tube outer surface as

0-5¢ {Appm [1 — cos a1(0)] [Tp* — T*4(Ry, 6)]
+ Apm [1 - COS as(e)] [T;4
— T, 1) = 2 T

r=Ry

1.2. The boundary condition at the tube inner
surface

At the inner surface heat is transferred to the
coolant by convection and there is also inter-
radiation heat transfer between those parts of
the surface at different temperatures. The con-
dition to be satisfied here is derived by consider-
ing an elementary area, denoted by dF;, on the
tube inner surface and equating the heat input
due to conduction and radiation from the
remaining area of tube inner surface to heat
taken away by convection and radiation.

To calculate the heat input to dF; by radiation
from the remaining area of the tube inner surface,
consider another elementary area on the inner
surface not necessarily in the same plane,
denoted by dF;, and calculate the radiant heat
emitted by dF; which strikes dF; (Fig. 6). By
integrating dF; over the inner surface area, the
radiant heat input to dF; is found.
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FiG. 6. Inner surface of a tube showing co-ordinate
system.

Consider dF; at the centre of the base of a
unit hemisphere with the base lying in the
tangent plane to the surface at dF;. The radiant
heat input to dF; from dFj is given by

diji = Ij dFj' COos (1r/2) dFjcos 7 (12)

I; is given in terms of the absolute temperature
T; of dF; by the equation

I = (o/m) Aym Ty*4

Expressions for dF; and - are found by
considering a rectangular Cartesian co-ordinate
system at dF; as origin in which the x-axis lies
in the base plane of the hemisphere, the y-axis
is the outward drawn normal to dF; and the
z-axis lies parallel to the tube axis (Fig. 6). Using
spherical polar co-ordinates r, 8, ¢ with r = 1,
gives

dFy =sin6dfde

cos T =sinfsin ¢

Also the total radiant heat input to dF; is
found by integrating equation (12) over the
surface area of the hemisphere. Substituting for
I;, dF;' and cos 7 this becomes

dqji = AMM dFi .f T;'; sin @ d(p .f sin2 6 df
0 0
T4 is under the integral sign since its value is a
function of ¢, and, of course Re. Thus replacing
T; by T(Rz, ¢) and performing the integration
with respect to 8 yields an expression similar to
that given by Saltzmann [1].
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This is

dgsi = 0-5¢ Ay dF; § T}4(Rs, @) sin ¢ de (13)
0
Using the Stefan-Boltzmann law and noting
that the temperature of dF; is a function of the
circular polar co-ordinates r and 0, the radiant
heat flux from dF; is given as

(o/m) Aprsr T*4(Rq, 6) (14)

Also, if the coolant temperature is assumed
constant, the heat flux transferred from dF; by
convection is expressed as

h[T(Re, 6) — Tc] (15)
Finally, there is the heat flux received by dF; by
conduction, this is given as

oT(r, 6)
A (16)

r=Ro

Using expressions (13)—(16) and equating radiant
heat flux input to radiant heat flux output yields
the condition to be satisfied at the inner surface.
This becomes

HT(R2, 6) — T¢) + 0-50 A ml2T*4(R2, 6)
" ] aT(r, 0)
- *4 =
j(" T*4(Rz, @) sin ¢ do] A—a-r—

r=Ro

1.3. The equation to determine the background
temperature

The background temperature is found by
equating the heat input to the background due
to radiation from the flame, to the heat output
due to radiation between background and tubes.
Since uniform flame and background tempera-
tures are assumed, only one tube need be con-
sidered (Fig. 1). If s denotes the distance
between the centres of adjacent tubes, then for
unit length of flame in the direction of the tube
axis, the radiation between flame and background
is, by the Stefan-Boltzmann law,

(s — 2Ry) oArp [T3t — T34 an

Now expression (9) gives the heat flux from the
background to an elementary area on the tube
outer surface. This is

0-5¢ Apm(l — cos ag) (Tgt — T*9)
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For unit length of tube, an elementary area on
the tube outer surface is Ry df. Remembering
that a3 and 7 depend on 0, then the radiation
into the elementary area becomes

0:-50 Apm [l — cos az(0)] [Th*— T*4( Ry, 0)] Ry do

Thus the total radiation between the background
and the tube outer surface is

0-50 AgyRy [[1 — cos az(8)]
' [T;4 — T*(Ry, 6)]d8  (18)
Equating this expression with (17), yields
(s — 2R)Arp (T3t — T3] =05 Ry Ay
x Zoj"[l — cos as(@)] [T2* — T*(Ry, 6)] d6

Dividing each side by s gives, since 8 =2 Ri/s,
(1 — B)Arp|Ty* — T3 = 0258 Apm
27
X [l — cosag(D)][Ta* — T**(Ry, )] d0 (19)
0

From the expression for 1 — cos ag(f), given
in Appendix 1.4 it can be seen that

Tt = cos as(@)] [T2¢ — T*4(Ry, 6)] d6 =
2 Tl — cos as(®)] [T24 — T*(Ry, 0)] d6

Thus expression (19) finally becomes
(1 — P Arp[Tp* — T34 = 058 Apm
% Il ~ cos as(®)] [T+ — T*(Ry, 6)] 46
0

1.4. Formulae for1 — cos ai(6) and1 — cos a3(6)

Values for 1 — cos ay(f)and 1 — cos ag(f) will
depend upon the value of 8. By considering a
point (Ri, 8) on the tube outer surface and using
known trigonometric relationships, the following
expressions for 1 — cos a1(f) and 1 — cos a3(f)
are derived:

1 —cosai(f) =1

4cos0{‘li _sinf)}*_i_{l _ZSin 0}
BB B B
4

+
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for0< <=2+ 8
0 for(@/2) + 6 <<=

1 — cosag(@) =1 — cos ay(w — )

for0 <0<~

where 8 = cos™1 8.

APPENDIX 2
Modifications to formulae for a cylindrical flame
enclosed by a square combustion chamber

The equations derived in Appendix 1 are
applicable, as stated in Section 2 to an infinite
plane radiating source representing the flame.
This is the case, for instance, when a flame
completely fills a combustion chamber. How-
ever, it is possible to include other flame shapes
by considering the geometrical configuration
of the system and appropriately modifying the
derived equations.

Consider for example the case of a cylindrical
flame situated at the centre of a square com-
bustion chamber, the flame being represented by
a cylindrical radiating source. Here the boundary
condition at the tube outer surface and the back-
ground temperature are affected by the geo-
metry of the system.

Considering the tube situated at the middle
of one side of the combustion chamber (so
as to retain the condition of symmetry), the
modifications are as follows:

2.1. The boundary condition at the tube outer
surface

The basic form of the equation to be satisfied
at the tube outer surface remains the same but
the formulae which determine 1 — cos a1(f) are
altered. Let the new expression for 1 — cos ai(6)
be denoted by 1 — cos a1(8). By considering a
point (Ry, ) on the tube outer surface, it can be
shown that for 0 € 8 < y

1 — cos a1(f) = (32G2/n2)

G is called the geometric factor and is defined
as the ratio of the flame perimeter to the com-
bustion chamber perimeter. y is given by the
equation

y = cos~! {4G/n}

and is the limiting value of § beyond which the
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amount of flame viewed from the point (Ry, 6)
decreases as @ increases.

For y < 8 < = there are two possibilities,
either (a)
1 — cospu(f) < 1 — cos ay())
or (b)
1 — cosp(P) < fory <8 <t
for 6 = 01

for, <6<

1 — cos ai()
=1 — cos a1(t)
> 1 — cos a1(0)

Where u(f) denotes the “plane” view angle of
the flame at the point (R;, 6) and is given by the
equation

1 —cosu(f) =1 — {1 — (16G?/=2}}
sin § + (4G/r) cos 0
If (a) then
1 — cosai(®) = 1 — cos u(6)

fory<f<m—y

=0 formr—y<0<n
If () then
1 — cosai(®) = 1 — cos ()
fory <0<t
=1 — cos a;1(6)
for0) < 0 < (n/2) + 8
=0 for(#/2) + 6 <0< 7

In the formulation of the above expressions it
has been assumed that the tube diameter is very
small in comparison to the width of the chamber
sides, so that the ratio of tube diameter to the
width of the chamber side is taken to be zero.

The expression to be satisfied at the tube
outer surface becomes

0-5¢ {AFM fl1 — cos :11—(9-)] [Te*t — T*Y(R,, 0)]

+ Apu[1 — cos ag(8)] [T22 — T*(Ry, o)]}

_ 2109

or (20)

r=Ry
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2.2. Calculation of the background temperature

The background temperature is found, as
before, by equating the radiative heat input
to the radiative heat output at the background.
However, in this case, since flame and com-
bustion chamber perimeters differ, total radia-
tion must be considered.

Let D denote the width of each side of the
combustion chamber, d the flame diameter, and
N the number of tubes lining the combustion
chamber, then the flame radiation/unit area of

background is given as
— 2R)N =d
Cin apoAm T

The radiation/unit area from the background is

— 2R)N
g% o Arp T2

Thus, the net radiation/unit area input to the
background becomes
(s — 2R)N
4D

d
o Arp [}1’5 Ta — T;;4J Q1)

Using the expression (18), the radiation/unit
area exchanged between the background and the
outer surface of the tubes becomes
27
0-5 (N/4D) a AsmRy I [1 — COs 0.3(0)]
0
[Tz — T*(Ry, 0)] 6 (22)

Equating expressions (21) and (22), and simpli-
fying gives

(s — 2R1) Arp [(d/4D) T34 — T4 =
Ry Apy | [1 — cos as(8)] [T22 — T*4(Ry, 6)] df
0

Dividing both sides by s and, since G is the ratio
of flame perimeter to the perimeter of the com-
bustion chamber, substituting G for »d/4D gives
the expression for the calculation of the back-
ground temperature. This is

(1 — B 4rs [GT;* — T3] =
0-58 Apn g [1 — cos as(6)]
[T3* — T*(Ry, 6)] d6  (23)

Thus, the temperature distribution prevailing
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in the cross-section of the tubes which are
situated at the mid-point of the sides of the
combustion chamber is given by solving equa-
tions (20) and (23) together with equations (2),

J. CSABA, A. D, LEGGETT and G. HORN

(4) and (5). To obtain the temperature distribu- equations (2), (4), (5) and (20).

Résumé—On expose une méthode de détermination de la distribution de température dans un tube
refroidi intérieurement et exposé A un rayonnement non uniforme autour de sa surface extérieure.
La transport de chaleur radial et circonférentiel dans la paroi du tube est étudié et I'on tient compte du
rayonnement de la surface intérieure du tube en plus de la convection. On a ajouté également I'influence
de ’espacement des tubes sur la distribution de température.

On a écrit les équations applicables au cas de tubes exposés au rayonnement d’une flamme qui peut
étre assimilée 4 une source plane infinie. En annexe, les équations sont modifiées pour s’appliquer
au cas d’'une flamme assimilée & une source cylindrique.

En employant des approximations de différences finies et une itération, une méthode de résolution
en régime permanent a été ébauchée. Elle a été programmée sur un calculateur numérique et I'on a
présenté les isothermes correspondant & un ensemble donnée de paramétres.

On donne également un apergu d’une solution approchée qui est en bon accord avec la solution
numérique lorsque la différence de température entre la source de rayonnement et I'environnement

est faible.

Zusammenfassung—Zur Bestimmung der Temperaturverteilung in einem innen gekiithten Rohr
dessen dusserer Umfang einer ungleichméssigen Strahlung unterworfen ist wird eine Methode ange-
geben. Der Wirmetransport in der Rohrwand in Radial- und in Umfangsrichtung ist beriicksichtigt
und an der inneren Rohroberfliche wird zur Konvektion ein Strahlungsanteil zugeschlagen. Auch
ist der Einfluss des Raumes zwischen den Rohren auf die Temperaturverteilung in die Betrachtung
einbezogen.

Die abgeleiteten Gleichungen gelten fiir Rohre welche einer Flammstrahlung ausgesetzt sind die von
einer unendlichen ebenen Quelle zu kommen scheint. Im Anhang sind die Gleichungen fiir die von einer
zylindrischen Quelle herrithrenden Strahlung modifiziert.

Mit Hilfe der Niherungen durch endliche Differenzen und Iteration erhalt man eine Losungsmethode
fiir den stationiren Fall. Die danach auf einer digitalen Rechenmaschine fiir eine Reihe gegebener
Werte ermittelten Isothermenkurven sind angegeben. Auch eine Niherungsldsung ist wiedergegeben
die fiir kleine Temperaturdifferenzen zwischen strahlender Quelle und Hintergrund zu guter Uberein-

stimmung mit der numerischen Lgsung fithrt.

Anmporamua—DB craTbe HpenJOMKeH MeTOJ| OIpeAeseHNs pPacHpefeleHnA TeMIepaTyph B
oxXmaxgaeMoll UBHYTPH TpyGe, HAPYKHAA MOBEPXHOCTb KOTOPOH IO/BEPraeTcA AeHCTBHIO
HEOAHOPOXHOro uanydenud. PaccmarpuBaercss pafiuadbHAA U YIJIOBAaA TEIONPOBOAHOCTD B
creHKe TpyOH 1 HA BHYTpeHHel ee moBepXHOCTH. [IOMMMO KOHBEKIUH YIUTHIBAETCA B3AUMHOE
uBIydenue. YUMTHBAETCH TAKKe BIMAHME DACIONOMeHAA TPYOH Ha pacnpereeHue TeMm-
1epaTypH.

BuBefieHH ypaBHEHNA , IPUMEHNMEIE K CIIy4al0 BO3/IeiCTBIA Ha TPY O 3Ty UeHNS TIaMeHH,
KOTOpOE MOMKHO TPECTABMTH B BUAe OSCKOHEUHOrO IIOCKOTO MCTOYHMKA. B mpmiomeHuu
ypaBHeHNsI MOTU(PUUUPOBAHE MPUMEHATENBHO K CIYYAI0 MIIaMeHH, IPeACTaBIeHHOr0 B BUAe
MUINHAPUYECKOTO UCTOUYHNKA.

C nOMOmBIO ANMPOKCMMALMN KOHEYHEIMI PASHOCTAMU M WTepauuu paspaboTaH MeTon
pellieHNsT CTANMOBADHOY 3ajiadil. 3ajaua BanpoTPaMMMPOBAHA [JIA PELIEHNS HA CYETHOM
mamnse. Ha ocHOBe IMOJIyYeHHBIX JaHHHX MPENCTABIEHH PeaylIbTHPYIOMMe H30TepMUIecKIe
KPUBHLE,

Briseneno npubiauxeHHOe pellleHMe, JAl0liee X0pollee corjacue ¢ YMCICHHEM pemieHneM

mpu HeGOJBIION PABHOCTH TeMOEpPaTyp Me:KAy MCTOUYHMKOM UBIY4YeHUS H donoM.

tion for the tubes which are situated in the
corners of the combustion chamber, substitute
G+/2 for G in equation (23) and in the expressions
for 1 — cos a3(f) and y and solve together with



